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Abstract

This paper compares the determination of optimal cutoff points for single and multiple tests in the

field of personnel selection. Decisional skills of predictor tests composing the multiple test are

assumed to be endogenous variables that depend on the cutting points to be set. Our main result

specifies the condition that determines the relationship between the optimal cutoff points for single

and multiple tests, given the number of predictor tests, the collective decision rule (aggregation

procedure of predictor tests' recommendations) applied and the function relating the tests' decisional

skills to the cutoff point. The implications of our main result are developed for special types of

collective decision rules such as disjunctive and conjunctive ones. The proposed group decision-

making method is illustrated by an empirical example of selecting trainees for a large company by

means of the assessment center method. It is shown how the predictor cutoffs and the collective

decision rule are determined dependently by maximizing the multiple test's common expected

utility. Our analysis implies that centralized decision-making systems can improve their

performance by changing the cutoff points determined separately for each screening predictor.



Introduction

Over the past few decades, much psychometric research has been aimed at improving the use of

educational and psychological tests as means for decision making rather than for estimating ability

scores from test performances. Examples of such decisions are admittance of students to a

university and personnel selection in industry (e.g., Chuang et al., 1981; Cronbach & Gleser, 1965;

De Corte, 1998; Petersen, 1976; Raju et al., 1991; van der Linden & Vos, 1996; Vos, 1997a), pass-

fail decisions in education and successfulness of therapies in psychodiagnostics (e.g., Huynh, 1977;

Lewis & Sheehan, 1990; Vos, 2001), optimal assignment of students to different instructional

treatments in Aptitude Treatment Interaction (ATI) research (e.g., Cronbach & Snow, 1977; van der

Linden, 1981; Vos, 1997b), and vocational guidance decisions in which most promising schools or

careers must be identified (e.g., van der Linden, 1987). Optimal cutoff points can be found by

formalizing each of the above types of elementary test-based decisions as a problem of Bayesian

decision making by maximizing its expected utility (e.g., DeGroot, 1970; Lehmann, 1959).

The existing psychological and educational literature discusses how cutoff points can be

determined, while there is only one test or one measure which weighs the scores on a number of

tests as a composite score, or, for many tests, how the cutoff point on each test can be determined

separately. However, no results are reported how in case of a multiple test composed of several tests

the cutoff points on each separate test and the collective rule (i.e., aggregation procedure) can be

determined dependently. For example, take a predictor-based selection system in which the

collective decision rule is that an applicant must pass (n+1)/2 out of n predictor tests, then one must

decide on a cutoff point for each separate predictor test.

Therefore, the goal of this paper is to present a model that takes into account the dependence

between the cutoff points on a number of predictor tests composing a multiple test and their

aggregation process to come to a collective decision in terms of rejecting or admitting an applicant

for a job in industrial/organizational (I/O) psychology. In other words, the cutoff points and the

aggregation rule will be optimized simultaneously by maximizing the multiple test's common

expected utility.

In essence, personnel selection involves the screening and comparison of applicants by

means of valid procedures with the purpose of obtaining the intended quota of supposedly most

successful employees (e.g., Cronbach & Gleser, 1965). In selecting the required quota or selection

ratio (i.e., fixed proportion of all applicants that can be accepted due to shortage of resources), a

mechanism of top-down selection is usually followed by selecting applicants with the highest scores



on the (composite) predictor test until the quota is filled. For instance, the well-known Taylor-

Russell (1939) tables are based on this formalism.

In addition, top-down selection formalisms have been proposed in personnel selection that

are based on the expected average criterion score of the selected applicants (e.g., Boudreau, 1991;

Brogden, 1949; Cronbach & Gleser, 1965; De Corte, 1994). In fact, these methods are prevailing in

the literature but cannot be employed if future criterion behavior (i.e., job performance) is assumed

to be a dichotomous variable, that is, either successful or not (e.g., Raju et al., 1991). In these

situations we have to resort to the expected success ratio, that is, the proportion of applicants

accepted that will be successful in their future job performance.

Although the existing psychology literature dealing with classification procedures in terms

of acceptance/rejection usually takes the given quota into account, this approach is not followed in

the present paper. The main reason is that there are many problems in which it is not feasible to

assume quota restrictions, for example, deciding on whether or not to hospitalize a patient. In the

field of personnel selection, also situations may exist in which it is not feasible to impose quota

restrictions. For instance, if we want to select all applicants who showed satisfactory performance

on a fixed number of predictor tests. This is exactly the situation where the present paper is aiming

at by selecting all applicants with scores on each predictor test higher than a cutoff point that clearly

depends on the number of predictor tests composing the multiple test, the aggregation process of

predictor tests' recommendations, and the function relating the tests' decisional skills to the cutoff

point. In principle, unlike the fixed quota methods, none or all of the applicants might be selected

with the unconstrained dichotomous choice model proposed in the present paper.

The problem addressed in the present paper shows some correspondence to the case of

multiple hurdles or multi-stage selection in I/O psychology (e.g., De Corte, 1998, Milkovich &

Boudreau, 1997; Sackett & Roth, 1996). The case of multiple hurdles deals with a situation in

which an applicant is expected to show minimum proficiency in several skill! areas. In this

scenario, as opposed to, for instance, multiple regression analysis, a high proficiency in one skill

area will not typically compensate for a low proficiency in another skill area.

The model advocated here has been applied earlier successfully by Ben-Yashar and Nitzan

(1997, 1998, 2001) to the field of economics where organizations face the comparable problem of

deciding on approval or rejection of investment projects. A team of n decision makers has to decide

which ones of a set of projects are to be accepted so as to maximize the team's common expected

utility. The proposed group decision-making method can be applied to many binary decisions

determined by teams of decision makers or test systems.



The paper is organized as follows. Section 2 applies the Ben-Yashar & Nitzan economic

model to the field of personnel selection. In Section 3 we derive necessary and sufficient conditions

for optimal cutoff points of single and multiple tests. In Section 4 the optimal cutoff points set on

single and multiple tests are compared by deriving an inequality that specifies the relationship

between these two types of cutoff points. Section 5 focuses on the comparison of the two types of

cutoff points for special types of collective rules, namely, disjunctive and conjunctive ones. The

comparison between optimal cutoff points for single and multiple tests in predictor-based selection

is empirically illustrated in Section 6 where applicants are either accepted or rejected as trainees for

a large company by means of the assessment center method. The concluding section contains a brief

summary of the main result and discusses a few possible lines of future research by loosening some

of the assumptions in the present framework.

The Model

In the field of personnel selection, it often occurs that an applicant is either accepted or rejected for

a job based on a multiple test composed of several predictor tests, i.e., a battery of n (n 1)

performance measures such as psychological tests, role-plays, and work sample tasks. It is assumed

that the true state of an applicant regarding the future job performance (usually a supervisory

performance rating) is unknown and can be qualified as either suitable (s = 1) or unsuitable (s = -1).

An applicant is qualified as suitable if his or her performance is at least equal to a pre-established

cutoff point (performance level) on the criterion variable(s) represented by the future job

performance. Furthermore, based on applicant's performance on predictor test i (1 i n), it is

decided if an applicant is passed (a, = 1) or failed (ai = -1) on predictor test i. The decision table for

each predictor test i is therefore:

Decision State Applicant

Pass

Fail

Suitable Unsuitable

(1,1) (1,-1)

(-1,1) (-1,-1)

The true state of an applicant, however, is unknown on each of the n predictor tests. Instead,

an applicant receives a test score x, (i.e., a performance rating) on each predictor test i which



depends on applicant's performance in a certain skill area. It is assumed that the scales of the

predictor tests have been transformed such that they cover all the same range of test scores. The

pass-fail decision a, is now made by setting a cutoff point on each test score x, in the form of a

threshold R (i.e., predictor cutoff) such that

R = ai= 1

xi < R = a; = -1.

The test score x, is drawn from a known distribution function represented by the density fl(.)

for suitable and f2(.) for unsuitable applicants. Therefore, the conditional probabilities p.1 and p2

that a predictor test i makes a correct pass-fail decision under the two possible states of nature (the

decisional skills of each predictor test) are:

and

co

pil = Pr {ai = 1 I s = 1 } = f fl(xi)dx

p2 =Pr {a; = -1 s = -1} = f f2 (xi )dx ,
-co

where (1- pl) and (1- ) can be interpreted as Type I and Type II errors (i.e., conditional

probabilities of making incorrect pass and fail decisions) of each predictor test i. Decisional skills

of predictor tests are assumed to be endogenous variables that depend on the cutoff points to be set.

Our assumptions imply both decentralized information processing and limited communication; the

information available of a predictor test i is transformed into a binary signal (pass/fail) and it is only

these signals that are communicated.

In the sequel, although the predictor tests i will usually differ in their outcomes regarding

passing or failing of applicants, it will be assumed that the decisional skills of each predictor test i

are equal. As a consequence, the index i in p.1 and p2 be dropped from now on. In other

words, Vi, p.1 =pi, p2 This assumption of so-called homogeneous decisional skills is

realistic if, based on an applicant's proficiency in a certain area, the assessors (or teams of assessors)

who must decide if an applicant is either passed or failed on a predictor test i are equally skilled.



It is clear that by increasing R, Type I error (1-pi) also increases, and Type II error (1-p2)

decreases. Similarly, decreasing R reduces Type I error and increases Type II error. Since
dpi

2
-fi

dR
(R) < 0 and f2(R) > 0, these requirements obviously hold.

d

dR

Note that we make the following assumptions: (i) the predictor tests that usually differ in

± P2their outcomes are homogeneous in their decisional skills, (ii) P1

2
> 0.5 . This assumption

implies that pi > (1-p2), that is, a suitable applicant is more likely to be passed on a predictor test

than an unsuitable applicant. Thus, since the simple average of the test's decisional skills in the two

states of nature exceeds 0.5, each predictor test participating in the collective decision-making

process is valuable because this test's decisional skill is superior to that of a random decision

process. (iii) decisional skills of predictor tests are statistically independent. It should be noted that

the assumption of statistical or local independence is also frequently made in other applications of

psychological and educational tests. Local independence then means that when the abilities

influencing test performance are held constant (i.e., conditioning on ability), examinees' responses

to any pair of items are statistically independent. In fact, local independence is one of the basic

assumptions made in Item Response Theory (IRT) models (e.g., Hambleton et al., 1991).

The vector a = (al,..., (20 is referred to as the decision profile of a set of n predictor tests for

an individual applicant, where ai = 1 or ai = -1 denotes if the applicant is either passed or failed on

predictor test i (1 i 5 n). The collective decision, acceptance (1) or rejection (-1) of an applicant, is

then determined by means of a decisive aggregation rule g that transforms the profile of decisions

on n predictor tests into a collective decision. g is referred to as the structure of the collective

decision-making process and assigns 1 or 1 (acceptance or rejection of an applicant) to any

decision profile a in S-2 = {1,-1)". That is, g: S2 > {1,-1). The same problem is faced in the multiple

hurdles scenario where, based on applicant's performance on several tests, a collective decision 1 or

1 (acceptance or rejection of an applicant) must be made.

To formally define the objective function (i.e., the multiple test's expected common utility),

we need to present the conditional probabilities of reaching a correct collective decision, given the

structure g. Let us therefore partition the set 52 of all decision profiles into A(g /1) and A(g /-1),

where A(g 11) = {a E E2 I g(a) = 1} and A(g I-1) = {a E S2 I g(a) = -1},where g(a) is the collective

decision for a decision profile a. For a given structure g, the collective decision-making process

accepts a suitable applicant and rejects an unsuitable applicant with probability co(g /1) and yo(g- /-1),



respectively, where cc(g 11) = Pr{a E A(g /1) I s = 1} and ce(g 1-1)= Pr{a E A(g 1-1)I s = A}. Note

that for a single test, (o(g 11) and co(g 1-1) are equal to respectively pi and p2.

Necessary and Sufficient Conditions for Optimal Cutoff Points

For a multiple test, our goal is to derive the collective decision rule g and cutoff point R

dependently that maximize the multiple test's common expected utility. Therefore, the following

problem is faced:

Max Rig aU(111)co(g 11) + aU(-1/1)(1-yo(g/1))+

(1-a)U(-1/-1)9(g/-1)+ (1-a)U(11-1)(1-c(g 1-1)), (1)

where U(111), U(11-1), U(-11-1) and U(-1I1) are the (economic) utilities corresponding to the four

possible decision outcomes on each predictor test, that is, correct passing (true positive), incorrect

passing (false positive), correct failing (true negative), and incorrect failing (false negative).

Furthermore, a (a # 0,1) and (1-a) denote the a priori probabilities that an applicant is qualified as

either suitable (1) or unsuitable (-1). Since [aU(- 1/1) + (1-a)U(1/-1)] does not depend on R, the

above maximization problem can be reduced to the following form:

MaxR,g aU(1/1)v(g /1) - aU(-1/1)v(g 11) +

(1-a)U(-1/-1)(o(g/-1)- (1-a)U(11-1)(o(g 1-1).

Let U(1) = [U(1/1) U(-1/1)] denote the positive net utility corresponding to the correct pass

decision, and let U(-1) = [U(-1/-1) U(1/-1)] denote the positive net utility corresponding to the

correct fail decision, it then follows that the maximization problem in (1) can be formulated as:

MaxR,g aU(1)yo(g /1) + (1-a)U(-1)qXg /-1). (2)

Threshold utility

It should be mentioned that in fact a so-called threshold utility function is assumed in the present

paper. That is, the utilities involved can be summarized by possibly different constants for each of

40



the four possible decision outcomes (i.e., fixed utilities). In other words, although the utilities

depend indirectly on the value of the predictor cutoff R via the pass-fail decision, they do not

explicitly depend on R. For instance, the utility corresponding to an incorrect pass decision on

predictor test i (i.e., U(1/-1)) for an unsuitable applicant who is far above R is the same as for an

incorrect pass decision for an unsuitable applicant who is performing just above R. This will be true

for both suitable applicants and unsuitable ones. Considering the joint distribution of the applicant

predictor and criterion scores, it is also obvious that the expected criterion score (and hence, the

utility) of an applicant who passed predictor test i will vary for different cutoff values of R. Most

current models of personnel selection utility, therefore, follow the classical Brogden-Cronbach-

Gleser suggestion (Brogden, 1949; Cronbach & Gleser, 1965) to express the utility explicitly as a

function of the predictor cutoff R.

However, like the model proposed in this paper, some models of personnel selection utility

assume that utility does not explicitly depend on the value of R by adopting a threshold utility

function (e.g., Chuang et al., 1981; Petersen, 1976; Raju et al. 1991; Vos, 2001). Threshold utilities

are also frequently assumed as being appropriate in the context of educational decision making

(e.g., Huynh, 1977; Lewis & Sheehan, 1990; van der Linden, 1987). The main reason for defending

threshold utility by all these authors is that, referring to the previous given example, applicants with

scores on predictor test i far above R will hardly never be qualified as unsuitable. Moreover, these

authors assume that utilities corresponding to the correct pass and fail decisions (i.e., U(1/1) and

U(-1/-1)) remain relatively stable for applicants with predictor scores respectively far above and far

below R. So, if it is assumed that utilities are in fact only sensitive to changes in predictor scores

around the cutoff point R, the discontinuous threshold function as a "jump" from one constant value

to another can be defended as a realistic model for personnel selection utility.

Finally, it can still be remarked that threshold utilities are quite convenient from a

mathematical point of view. As will become clear below, not the absolute utilities U(1/1), U(-1/1),

U(-1/-1) and U(1/-1) have to be specified for computing the optimal cutoff points but only the so-

called utility ratio U(1)/U(-1), that is, U(1) relative to U(-1), has to be specified.

Most texts on decision theory propose lottery methods for empirically assessing the fixed

values of the threshold utility function (and hence, the utility ratio (e.g., Luce & Raiffa, 1957)).

Generally speaking, these methods use the desirability of outcomes to scale the consequences of

each pair of decision outcome and true state. In the empirical example below, the correct and

incorrect pass decisions (e.g., hiring and training costs) were perceived as respectively the most and

the least preferred outcomes from the economic perspective of the company.

1I



Qualified majority rule (QMR)

Quite often the collective decision rule g is given and not necessarily optimal. However, it might

still be possible to improve the predictor-based selection process by controlling its optimal cutoff

point R *. Suppose now that a qualified majority rule (QMR) is employed, which is defined as

follows:

N( -1) kn
g

1 otherwise,

where N(-1) is the number of predictor tests failed by the applicant, n is the number of predictor

tests, and k (1/n 5_ k 1 and kn is an integer) is the minimal proportion of predictor tests failed by

the applicant necessary for the collective decision to be -1 (rejection of applicant). The parameter k

represents the collective decision rule g, or the structure of the decision-making process. For

instance, a simple majority rule k = n
+1

implies that an applicant is rejected if N(-1) ?_ n
2

+1
and

2n

accepted otherwise. It should be noticed that the assumption of a QMR is plausible because the

optimal collective decision rule is always a qualified majority one, as shown in Ben-Yashar and

Nitzan (1997). The problem we face is therefore:

MaxR aU(1)co(k /1) + (1-a)U(-1)(o(k I-1).

Given the structure k of collective decision-making and the number n of predictor tests, the

optimal cutoff point R* for a multiple test is determined by the following necessary condition:

(1 a)U (-1)
where Z

aU (1)

dP1 = -L dp2

dR dR
,

co(g /-1)

and W
ago(g/l) 1p1

aP2 P2

P1

aPl

12

(3)



Following the line of reasoning given by Ben-Yashar and Nitzan (1998), the proof of the above

assertion is given in Appendix A. If it is henceforth assumed that
d2 pj

< 0 d p2 < 0
dRd dR 2

a2m(a /1)
< 0 and a29(8.1-1) < 0, it is also shown in Appendix A that these conditions are

apl a/4

sufficient to ensure that Rs is a maximum. In the empirical example below, these sufficient

conditions will be examined for the situation that f, (x) and f2(x) are assumed to be normally

distributed.

In a single test, it obviously holds that n, and thus k, is equal to 1 implying that W= 1. It

follows then immediately from (3) that the optimal cutoff point R+ in this case is determined by the

following necessary condition:

dpi zdp2
dR dR

Note that (4) also follows immediately from (2) since gc(g /1) = pi and co(g 1-1)= 192 for a

single test. Also, it follows immediately from (4) that
d2

21
d p2< 0 < 0 are sufficient

dRd dR2

(4)

conditions to ensure that R+ is a maximum.

The term Z which appears in equations (3) and (4) relates to the environmental

characteristics of the decision-making process, viz., the prior that an applicant is suitable and the

fixed utilities corresponding to the four possible outcomes for a predictor test. In fact, Z represents

the quality of the selection environment. If state of nature 1 is superior to state of nature -1, the

lower the Z, the higher the quality of this environment. Z < 1 represents an environment of

relatively high quality. Z> 1 represents a relatively low-quality environment. Z = 1 represents a

neutral environment. In other words, in this case there is no bias in favor of acceptance-rejection

and pass-fail decisions of applicants in terms of respectively the priors of the two states of nature

(i.e., a= (1-a)) and the net utilities corresponding to the two states of nature (i.e., U(1) = U(-1)).

The term W which appears in (3) and not in (4) is the ratio between the marginal

contribution of a test's decisional skill to the collective probability of making a correct decision in

states of natures 1 and 1. W depends on the three characteristics of the decision-making process:

structure (collective decision rule), number of predictor tests composing a multiple test and a

performance measure of its predictor tests which depends on their decisional skills. Note that when

BEST COPY AVAILABLE



W= 1 the effect of a marginal change in a test's decisional skill is identical under the two states of

nature, that is, a9(g /1) °Co(g I-1)

OP1 aP2

Relationship between Optimal Cutoff Points for Single and Multiple Tests

The optimal cutoff points for single and multiple tests in predictor-based selection are usually

different. Whether or not the cutoff points for single tests are stricter than the cutoff points for

multiple tests depend on the characteristics of the decision-making setting: the preferred decisional

skills of the predictor tests, the number of predictor tests and the collective decision rule. Our main

result specifies the condition that determines the relationship between the optimal cutoff points R+

and R* for single and multiple tests in predictor-based selection.

Theorem 1:

where

*
R R WL1 <=> kL

PIn 1

1 n -1 1 p2
n

= +
n ig1 + 132

P1n is the fixed size of the number of predictor tests, =1n and /32 = In P21 pi I-- P2

The parameter 2. can be interpreted as the bias/asymmetry of the tests' decisional skills.

Proof:

We first prove that R
* - R W .

Let h1 = dpi 1

dR Z
h2

dp 2

dR
and h3 = h2W.

14



Notice that

(i) hl , h2 , h3 > 0

(ii)
dhi dh2
d R d R

ah3
aR

By (3) and (4), R* and R+ are determined respectively by the equalities:

h3(R*) = h ) and h2(R+) = hi(R+).

W 1 <=> h2 (R
* <

) h3(R ) = hi(R ) <=> R+ R*

We complete the proof by showing that W
>

1 k
>

A .

Since W =

W
>

1

<=>

<=>

P2
kn-1 n kn

P2

p2 >
0

In P2 0

1) In P1

1 P1

(kn 1)

kn In

P1

In P2
1

kn) In+
1 pi

P2 Pl

(n
P1 <

In
1 p2

1 pi 1 P2

P1

+ n

P2 > in P2

1 P1 <

1 p2kn in(

kn

in
1 pi

P2

11 p2 <

)

In P1

1 P1 P1

± 162) + (nIn
1 pi + n

1 p2 1 /32

fi2 /61 + P2

We have thus obtained that



In P1

W
> 1 q kn > 1 p2

1 + (n 1) or W
> 1 q k >

± 162

Q.E.D.

(
The relationship between R* and R+ depends on the relationship between

avag/-1)

P2

ap(g/1)
that depends on k. When

aco(g/-1)
>

ago(g/l)
, i.e., when W> 1, from the perspective

aPl aP2 8P1

of a multiple test there exists a relative advantage to an increase in tests' decisional skills in state of

nature 1. This induces an increase in P2 and a decrease in pi by setting the cutoff point R* higher

than R+ (recall that < 0 and /-22-d > 0). A similar argument can be used to rationalize the
dR dR

determination of R* which is lower than R+ when W< 1.

Alternatively, the relationship between R* and R+ depends on the relationship between k and

X. When k> X., i.e., the structure of the multiple test is sufficiently lenient toward acceptance of

applicants, the decision-making system reacts by setting a cutoff point higher than the one set on a

single test, namely, by setting R* which exceeds R. A similar argument can be used to rationalize

the inequality Rs < R+ when k < X. Notice that the difference between R* and R+ is basically due to

the interchangeability between R and k (Ben-Yashar & Nitzan, 1998).

To further clarify the intuition behind the theorem from a personnel selection perspective

and, in particular, why R
* - R <=> k

>
let us first show that in a neutral environment X

approximates the optimal QMR for a multiple test consisting of a large number of predictor tests. In

a neutral environment where Z= 1, the optimal QMR, k *, is given by:

In P1 Pl)
* 1 1 P2 ( P2 )

k + 2 Q1 + /32

which follows immediately from the optimal QMR in the general case that Z represents a

bias/asymmetry in the environmental characteristics of the decision-making process (i.e., Z # 1):

16



k* =
2

1+

1
+

n
In

pi(1 Pl)
Z 2 P2 (1 P2 )

/62
2

Appendix B provides a proof of the above assertion, which is a slightly modified version of the

proof given in Ben-Yashar and Nitzan (1997).

Notice that

In P1
n -1 1 P2=1 +

n n 161 +/32

n +1 n 1
2n

n +1

2n

n +1

2n

P1In
1 P2 1

/62 2

P1 P1 P221n In In
n 1 1 P2 1 P2 1 Pl.

n 2(/31 + fl2)

P1(1 Pl)ln
n 1 1 p2(1 P2)

n 2 A +

(5)

which converges to k* for a sufficiently large n. When pi = p2, A. = 0.5; that is, the optimal QMR is

the simple majority rule.

When p, < p2, A. > 0.5; that is, the optimal QMR favours the acceptance of applicants which

is less likely to be the correct decision. If the given collective decision rule, k, implies a bias that

optimally takes into account the difference between p, and p2, i.e., k = 2, then from the perspective

of a multiple test there is no incentive to set R and, in turn, p, and p2 that differ from those set in a

single test. In such a case Rs = R +. If a collective decision rule k is faced that implies a bias in favour

of selection of applicants which is stronger than the optimal bias corresponding to pi and p2, i.e., k

> A, then an incentive exists to adjust'', and p2 in order to eliminate the discrepancy between k and

2. The adjustment requires an increase of R which reduces pi and raises p2, and therefore in such a

case Rs > R. A similar argument can be used for the case k < 2, which completes our intuitive
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*
R

±
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>
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< <

Disjunctive and Conjunctive Rules

A number of implications can be obtained from Theorem 1 in special cases of our model, that is,

when specific assumptions are made regarding n, k, and the relationship between the endogenous

decisional skills of predictor tests, pl and p2.

As already noted, the structure of the decision-making system is represented by k, the

minimal proportion of predictor tests in favour of alternative -1 (fail decision), necessary for the

collective decision to be -1 (rejection of applicant). The following discussion, however, pertains to

the structure of the decision-making system necessary for collectively reaching the decision 1

(acceptance of applicant). Hence kn = n means that the collective rule is a disjunctive one. That is, if

one predictor test decides in favour of alternative 1 (pass decision), then the collective decision is 1

(acceptance). kn = 1 means that the collective rule is a conjunctive one. That is, the collective

decision is 1 (acceptance) only when an applicant is passed on all predictor tests. In fact, a

conjunctive test can be interpreted as a case of multiple hurdles in personnel psychology.

By assumption, pi > (1-p2). Hence, for a conjunctive rule where kn = 1,

kn -1
w=

n kn ,
1 P2 132

< 1.(P2 j
1 pi

(I
P1 P1

)

By Theorem 1, in such a case R* < R+. In the extreme case of a disjunctive rule where kn = n, and

using p2 > 0-14 W P2

1 P1
> 1 and, by Theorem 1, R* > R.

The determination of optimal cutoff points for multiple tests takes into account the

collective decision rule, k, and the interchangeability between k and the cutoff point R. No wonder

then that for a disjunctive rule where the collective decision rule is most lenient toward acceptance

of applicants, stricter cutoff points are set relative to the cutoff points set on single tests. In contrast,

for a conjunctive rule, where the collective decision rule is least lenient toward acceptance of

applicants, more tolerant cutoff points are set relative to the cutoff points set on single tests.



In the symmetric case where there is no bias in favor of acceptance-rejection and pass-fail

decisions of applicants both in terms of the collective decision rule, k
n +1

, and in terms of the
2n

predictor cutoff which results in pi = p2, the same cutoff points are set on single and multiple tests.

Formally, since

kn -1 n kn
P2 P1 P2 > P1W >

1 <=> <=> P1 P2 (6)
1 P1 < 1 p2 1 /91 < 1 /32

and kn 1
>

n kn <=> kn
> n +1

, we obtain that if a simple majority rule is applied, that is, if
< 2

k =
n + 1

and the cutoff point yields identical decisional skills of the predictor tests, pi = p2, as
2n

frequently assumed in the literature, then W= 1 and k =
n +1

k. By Theorem 1, in such a case
2n

R* = R+

Finally, suppose that [aU(1) = (1- a)U( -1)]. In this symmetric situation (i.e., Z= 1), the

optimal cutoff point R+ on the single test is set by maximizing its expected utility [aU(1)p +

(1- a)U(-1)p2] implying that its average decisional skill P1
2

P2 is maximized. In general, R+

differs from R *. However, regardless of whether R* > R+ or R* < R +, in this symmetric situation

there is always a tendency that the average decisional skills of the predictor tests of a multiple test

are reduced relative to the average decisional skills of a single test.

Predictor-based Selection using the Assessment Center Method: An Illustration

To illustrate the comparison of the optimal cutoff points R+ and R* set on single and multiple tests

by using Theorem 1, the assessment center method is given as an empirical example. The term

refers to a procedure for evaluating the performance of individuals for such purposes as selection or

promotion of employees (e.g., Roos et al., 1997). In a typical assessment center the candidates

applying for a job participate in a variety of exercises that enable them to demonstrate a particular

skill, knowledge, ability, or competence, usually called job dimensions. These dimensions resemble

the future professional practice as much as possible. The performance rating on each exercise is

done by observers (called assessors) who are carefully trained in order for the method to be valid

9



and reliable. Comparing these ratings with a pre-established cutoff point, it is decided whether or

not an applicant's performance on each specific exercise is satisfactorily enough to be passed. Then

the assessors combine the pass-fail decisions on all the exercises and reach a collective decision for

each applicant, that is, either accept or reject the applicant for the job.

In the current example data were available for a large company. The candidates applying for

trainee positions in this company spent two days undergoing assessment of their managerial

potential by the assesssment center method. The following 15 exercises were identified: Oral

communication, planning and organization, written communication, analysis, reading skills,

judgment, initiative, sensitivity, leadership, management identification, delegation, technical

knowledge, reflection, trouble shooting, and presentation. The performance on each of the 15

exercises (i.e., the predictor tests i) was rated by a team of two carefully trained assessors on a 100

point scale running from 0 to 100. So, i was running from 1 to 15 and the predictor score xi was

running from 0 to 100.

Since the 15 teams of carefully trained assessors could be considered as approximately

equally skilled in the area they had to rate the applicant's performance, the decisional skills of each

of the 15 teams of assessors were assumed to be equal (i.e., homogeneous decisional skills), that is,

pl = P1 and p2 = /92 (1 i 15). In other words, the conditional probabilities of correct pass-fail

decisions for suitable and unsuitable applicants were assumed to be equal for each of the 15 teams

of assessors. Furthermore, since the company did not have any prior information of the applicants,

the a priori probabilities a and (1-a) of qualifying an applicant's true state (i.e., future job behavior)

as respectively suitable (s = 1) or unsuitable (s = 0) were set equal. Hence, a = (1-a) = 0.5.

Using the lottery method described in Luce and Raiffa (1957), the positive net utility

corresponding to a correct pass decision (i.e., U(1)) was perceived by the company from an

economic perspective twice as large as the positive net utility corresponding to a correct fail

decision (i.e., U(-1)). Hence, since the utility ratio U(1)/U(-1) = 2 and a = (1-a) = 0.5, it follows

that Z = 1/2. Since Z < 1, we are thus dealing with environmental characteristics of the assessment

center that can be characterized as being of relatively high quality.

In order to calculate the optimal cutoff point R* by means of (3), given the collective

decision rule k and number n of exercises, we finally still need to specify pi and p2 as functions of

R. It was assumed that the test score distributions fi(x,) and f2(xi) in the suitable and unsuitable

group of applicants followed the normal distribution with mean 1.11 and 112 (with 112 lower than 111)

and standard deviation cri and 62, respectively. Based on a sample of 127 candidates (69 accepted



and 58 rejected) applying for trainee positions in the past, the parameters 111,112, al, and a2 were

estimated in the following way.

First, for each candidate (both accepted and rejected ones) a composite predictor score x was

calculated by taking his or her average over all 15 exercises. Henceforth, the composite predictor

score will be denoted as X whereas future job performance will be denoted as the criterion variable

Y. Next, for each selected applicant a criterion score y (i.e., applicant's supervisor rating of current

job performance on a 100-point scale) was determined on the criterion variable Y. For the group of

selected applicants the following statistics could now be computed for X and Y: the means tix and

1.1 y, the standard deviations ax and ay, and the correlation pxy (i.e., validity coefficient) between X

and Y. Using these statistics, we then computed for each rejected applicant the predicted criterion

A

score y (i.e., future job behaviour if the applicant would have been selected) as a linear regression

estimate on applicant's composite predictor score x:

A

Y = µy+ PxY (axhay)(x-ilx) (7)

Note that Brogden's utility model (1949) also assumed the above linear regression estimate for a

A

single employee in which y then stands for the dollar value of an employee's performance.

Next, for each rejected applicant it was determined if he or she would have been classified

A

as suitable or unsuitable by examining if applicant's predicted criterion score y was above or below

a pre-established cutoff point y, = 55 on the criterion variable Y. Also, each selected applicant was

classified as suitable or unsuitable; that is, whether or not his or her criterion score y assigned by

applicant's supervisor exceeded yc. The mean and standard deviation offi(x) andf2(x) could now be

estimated straightforward yielding 1.11 = 72.83, 1.1.2 = 47.51, al = 10.28, and a2 = 11.14. The

assumption of normality forfi(x) and f2(x) was tested using a Kolmogorov- Smirnov goodness-of-fit

test. It turned out that the p-values were respectively 0.329 and 0.265, showing a satisfactory fit

(significance level of 0.05) against the data.

Thus, using the customary notation 421([1, a) for the normal distribution with mean p. and

standard deviation a, the cumulative density is (1)(1.11, al) for the suitable and 0(12, a2) for the

unsuitable applicants. It then follows that p, = 1 - (13$((R-gl) /al) (where cl)((R-111)/ai) now represents

the lower tail probability of the standard normal distribution evaluated at the cutoff point R),



whereas p2 = (1)((R-112)/$52)-

Sufficient conditions for R* and R+ being a maximum

2 uFor given structure k, the two sufficient conditions
d

P,1 < 0
'

, 2p2
< 0 ensuring that (2) has a

led dR2

maximum can now be examined. Let (1)(z) refer to the standard normal density evaluated at z, it then

dP1 dP d pi2
follows that = -CR-1.1.1)/cri) and that 2 -4)((R-112)/cr2). Next, it follows that

dR dR dR2

d2p2
(1/a1)[(R-111)/(71]4)((R-p.1)/cri) and

u
(1/a2)RR-112)/(3214((R-112)/a2). It can easily be verified

die

that the two sufficient conditions for a maximum will be satisfied only in the case that 1.12< R < 1-11.

This constraint makes sense, since it implies that the mean 1.1.1 of the suitable applicants must be

higher than Rs, whereas the mean [t2 of the unsuitable applicants must be lower than R. In addition

a2,a(0,/
to the sufficient conditions

(
/1) < 0 and < 0 for a maximum of (2), the constraint

ap?

[1.2 < R < III will be examined below for concrete values of R *.

Also, notice that the constraint 112 < R < µl is perfectly consistent with the assumption that

(Pt-E-P2)/2 > 0.5, or, equivalently, that [0((R-[1.2)/a2) (13((R-p.1)/a1)] > 0. This inequality holds

because (1)((R-112)/a2) > 0.5 and (1)((R-i.t1)/cc1) < 0.5; that is, [013((k1.12)/a2) (1)((R-111)/cri)] > 1.

Relation between R* and R+ for given values of k and n = 15

R+ was computed by inserting Y1-31 = -(1)((R-11.1)/a1), (1)((R1.1.2)/a2), and Z = 0.5 into (4)
dR dR

resulting in R+ = 57.22. R+ was computed numerically using a root finding procedure from the

software package Mathematica (Wolfram, 1996).

In order to investigate the influence of more and less lenient collective rules on the optimal

predictor cutoff, R* was computed for k = 3/15, k = 8/15, and k = 13/15. Inserting first k = 3/15 and

n = 15 into Wand next Wand Z = 0.5 into (3), and using again the root finding procedure from

Mathematica (Wolfram, 1996), resulted in R* = 49.22, W= 0.157, X = 0.226,p, = 0.989, andp2 =

0.561. So, verifying Theorem 1 for k = 3/15 = 0.2 results in:



R = 49.22 < R+ = 57.22 <=> W = 0.157 < 1 <=> k = 0.2 < 2 = 0.226.

As can be seen from the above result, R* < R+ implying that a more tolerant cutoff point is set on the

multiple test composed of 15 exercises relative to the cutoff point set on each single exercise. This

result can be accounted for that the collective rule k = 3/15 is much less lenient toward selection of

applicants than the simple majority rule since kn = 3 < 8 (i.e., (15+1)/2). This 'conjunctive like'

character of the collective rule k = 0.2 also implies that pi is so large (and thus, p2 so low) due to

only selecting applicants from which we can be pretty sure that they will be qualified as suitable in

their future job performance.

Next, for k = 8/15 = 0.533 (i.e., the simple majority rule), we obtained the following results:

R* = 60.31, W= 1.999, = 0.522,p, = 0.888, and p2 = 0.875. According to Theorem 1, a somewhat

stricter cutoff point R* is now set on the multiple test composed of 15 exercises relative to the cutoff

point R+ set on each single exercise. This makes sense since the simple majority rule is more lenient

toward selection of applicants than the collective rule k = 3/15. As a consequence of the more

lenient character of the simple majority rule, pi and p2 were respectively decreased and increased

relative to the collective rule k = 3/15. It can easily be verified that the simple majority rule meets

the requirement formulated in (6), since W= 1.999 > 1 .4=> pi = 0.888 > p2 = 0.875.

Finally, for k = 13/15 = 0.867, we obtained the following results: R* = 70.99, W= 19.66,

p = 0.571, and p2 = 0.982. As can be verified from Theorem 1 (i.e., W>> 1), a much stricter

cutoff point R* is now set on the multiple test composed of 15 exercises relative to the cutoff point

R+ set on each single exercise. This is because the collective rule k = 13/15 is much more lenient

toward selection of applicants than the simple majority rule. This 'disjunctive like' character of the

collective rule k = 13/15 also accounts for the finding that p2 is so large (and thus, pi so low) since

we only reject applicants from which we can be pretty sure that they would be qualified as

unsuitable in their future job performance.

Relation between R* and R+ for given value of n = 15

R* and k* will be determined dependently for n = 15 by maximizing simultaneously the multiple

test's common expected utility and subsequently comparing R* with R+ again. First k is written as

function of R according to (5), then this function is inserted into (3) and solved for R *. In doing so,

according to the definition of a QMR, kn must be rounded off to the next highest integer. Using

again a root finding procedure from the software package Mathematica (Wolfram, 1996), yielded



the following results: Rs = 58.40, k* = 7/15 = 0.467, W= 1.306, = 0.462, pi = 0.920, and p2 =

0.836. As is clear from Theorem 1, a somewhat stricter cutoff point Rs is now set on the multiple

test composed of 15 exercises relative to the cutoff point R+ = 57.22 set on each single exercise.

The optimal cutting points R* and R+, however, are nearly the same in case R and k are optimized

simultaneously. Also, the optimal collective rule is only one exercise more lenient toward selection

of applicants than the simple majority rule; that is, 9 out of 15 versus 8 out of 15 exercises must be

passed at least for being accepted, respectively.

Observe that Type I error (i.e., 1-pl = 0.080) is smaller than Type II error (i.e., 1-p2 = 0.164).

This result is desirable from the economic perspective of the company since the probability of

selecting applicants who turn out to be unsuitable in their future job performance should be lower

than the probability of rejecting applicants who would have been suitable in their future job

performance.

Examining the conditions sufficient for R* and R+ being a maximum

As is clear from the results, the sufficient condition vi2 < R* < for (2) having a maximum was

0() a 2(0(g /-1)
satisfied in all of the above examples. Also, it turned out that

a2(1)

< 0 and < 0
2

apl 432

for all values of R* in the above examples. Furthermore, a maximum was guaranteed for R+ since

112 < R+ < [Li.

It should be mentioned that the sufficient condition of 112 < R* < µl did not hold for n = 15

and k= 1/15 (conjunctive rule), 2/15, 14/15, and 1 (disjunctive rule) since R* turned namely out to

be equal to respectively 40.10, 45.68, 74.18, and 78.83. The sufficient condition for (2) having a

maximum, however, still appeared to hold due to the fact that the second derivative of (2) with

respect to R was negative for these values of R *. This finding can be accounted for that the second

derivative of (2) with respect to R consists of the sum of four terms (see also Appendix A) of which

either the second (k = 1/15, 2/15) or the fourth term (k = 14/15, 1) was now positive, whereas the

other three terms still turned out to be negative for these values of R *.

As an aside, it may be noted that the requirements of W < 1 and W > 1 for respectively a

conjunctive and disjunctive rule were met since W= 0.02 for k = 1/15 (conjunctive rule) and W=

95.23 for k = 1 (disjunctive rule).



Concluding Remarks

This paper focuses on the comparison between the optimal cutoff points set on single and multiple

tests in predictor-based selection. Since the characteristics of the two types of tests differ, these

cutoff points that determine in our dichotomous choice model the decisional skills of the predictor

tests are usually different. The relationship between them depends on the number of predictor tests

composing a multiple test, on its collective decision rule, and on the tests' decisional skills. Our

main result implies that the cutoff point for a multiple test is stricter than the cutoff point set on a

single test, if the collective decision rule is sufficiently lenient toward acceptance of candidates

applying for a job, as in the extreme case of a disjunctive rule. More generally, the structure of the

decision-making process applies stricter cutoff points for selection of applicants if the marginal

contribution of a test's decisional skill to the collective probability of rejecting unsuitable applicants

is larger than its marginal contribution to the collective probability of accepting suitable applicants.

Our results are applied to compare the predictor cutoffs adopted in centralized selection

systems and less informed decentralized selection systems. Clearly, decentralized predictor-based

decision making in selection systems based on incomplete information can be improved. This is

illustrated in the context of collective decision-making using the assessment center method by

teams of assessors regarding the acceptance or rejection of candidates applying for trainee positions

in a large company.

Two possible lines of future research arise from the present study. The first line is the

extension to situations where it is not realistic to assume homogeneous decisional skills. Such is the

case, for instance, if assessors are not equally skilled in the areas they have to rate applicants'

performance. Loosening this assumption complicates matters since a vector of optimal predictor

cutoff values must now be derived instead of one value for R*.

A second possible line of research would be, following the classical Brogden-Cronbach-

Gleser suggestion (Brogden, 1949; Cronbach & Gleser, 1965), to express the utility function rather

as a function of the predictor cutoff R than as a threshold utility like in the present paper. For

instance, analogous to Brogden's pioneering utility equation (1949), by expressing the utility for a

single employee (i.e., the observed dollar value of an employee's job performance) as a linear

regression on the composite predictor score (see also (7)). The choice of this utility function would

be more in line with current models of personnel selection utility.
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Appendix A

Theorem: Given the structure k of decision making and the number n of predictor tests, the optimal

cutoff point R* for a multiple test is determined by the following necessary (first-order) condition:

dpi
= Z dp2 W,

dR dR

whereas the following (second-order) conditions are sufficient for R* being a maximum:

d2
P1 d

2
P2 a 2co(g11) < 0

a2
, < O.

dR 2 dR2
uP1

2
(1P2

2

Proof: The solution R* of the optimization problem in (2) satisfies the following necessary (first-

order) condition:

a U(1)
av(g 11) dpi

+ (1 a) U (-1)
acp(g I-1) dp2 0.

apl dR 4)2 dR

When the collective decision rule g is a QMR and kn is an integer, and using N(-1) + N(1) = n, it

holds:

N ( 1) ?_ kn <=> n N (1) kn q N(1) n kn
g

1 otherwise .4=> N(1) > n kn <> N(1) ?_ n +1 kn,

and therefore

co(g/1) E [. )(pi) (1pi)n
i=n+lkn 1

n n

n
co(g I-1) =

n
(.)(192)i 132)ni

i=kn



It follows:

av(g/i) j(P1)i(1Pl)n i

i(P1)i-1 (1 P1)ni (n )(pi )i (n P1 )11i-1
i= n +1 kn a i= n +1 kn

Substituting j = i - 1 in the right-hand side expression, and using the obvious identities

1)= n i 1 and
[n

, we get

E1
ap(g 11)

= E n
n 1)

j(P1)i P1)(11-1) n
n 1`

(131)i Pl)
aPl j=nkn i=n-1kn

n -1
= n

n kn
(131)n kn (1 P1)kn

In a similar way we find that

8v I-1) n
= n(kn

1

1)(P2)kri
-1 P2)nkn

aP2

By substituting
ago(g /1)

and
aco(g/1)

in the first-order condition, we obtain
aP1 aP2

au dPl (17 1 n_kn

dR n kn (P1) (1 Pl)a-1

+ (l_ a)u( -1)dR2 knnil
(P2)kn I (1 p2)n-lcri
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Hence,

dpi
=

(1 a) U(-1) dp2 1cn-1P2 1-132
L...

dp2
--YV .

dR aU(1) dR 1 p1 P1 dR

The necessary condition for (2) having a maximum is also sufficient if the second derivative of (2)

with respect to R is negative, implying that the following inequality must hold:

aU(1)
a2v(g / 0 (dn.

2 dR
+ a U(1)

ap(g11) d 2pi.

api dR2

+ (1a)U(-1)a2p(g 1-1)
(

dp2)
n d2 R )
(P2

The assumed inequalities

a2
+ (I a)U( 1) p(g 1-1) d 2P2

< o.
02 dR2

,.,2 /_d 2pi. P2< 0 C4
, < 0

a2
, < 0

52

2dR 2 dR2 api apt

ensure that the above (second-order) condition is satisfied. This completes the proof.
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Appendix B

Theorem: For given n and R (and thus, pi and p2), the optimal qualified majority rule (QMR), k*, is

given by:

* 1
k =

2
1+

In
1

+
n pi(1 Pl)

,
Z 2 p2(1 P2 )

+ P2
2

Proof: For any decision profile a = (al,..., an) in f2, consider the partition of the predictor tests into

B(a) and D(a) such that i E B(a) if a, = 1 and i E D(a) if a, = -1. Note that I D(a) I = N(-1) and

B(a) I = N(1), implying that I D(a) I + I B(a) I = n. Furthermore, let t(a /1) and t(a /-1) denote the

conditional probabilities to obtain the decision profile a = (al,..., an), given that the applicant is

suitable (should be accepted) or unsuitable (should be rejected). In other words,

(
t(a 11) = U P1 al

+11
(1 P1)(1-

2

ai)
and

ieB(a) ieD(a)

al
+1)1 ai

t(a 1-1) = P2() 11 (1132)( 2i eD(a) zeB(a)

For a given collective decision rule g, it holds:

q)(g/i) = E t(a 1 1) and q(g1-1) = t(a 1 -1) .

aeA(g11) aeA(g 1 -1)

It follows that the solution of the maximization problem in (2) on which we focus is also the

solution of the problem:

Maxg aU(1) E t(a 11) + (1-a)U(-1) E t(a -1) .

aeA(g 11) aEA(g 1-1)
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The partition of 1-2 to A(g /1) and A(g 1-1) is determined by the control variable of the above

maximization problem, namely by the collective decision rule g. Consider the following condition:

for any profile of decisions a, a E Q,

1 if aU(1)t(a 1 1) > (1 a)U(-1)t(a 1 1)
1 if aU(1)t(a 1 1) (1 a)U(-1)t(a 1 1).

This condition ensures that g maximizes the multiple test's common expected utility in the problem

above and therefore in (2) over the set of all collective rules. In other words, a sufficient condition

for the optimality of g is that it partitions Q, such that

g (a) =-1 q aU(1)t(a 11) (1-a)U(-1)t(a 1-1)

<=>

al + 1 ri pi) 1-2ai
a LI (1) H P1- (

(a)

0
2

)
iED1 a U(-) iEB(a)

+
H P2 (1: c2 ) P2 )( a12

ieD(a) ieB(a)

In
1

+ In<=>
jai +1

In
p2 )1 ai

E (
Z iEB(a) 1 P2 2 iED(a) 1 Pi 2

ln<=>
1

+ In ai +1 n P2 1 aiP1 )
Z

in
i=1 1 P2 2 i=1 1 P11 2

< 0

(=>
1 1 pi P2 1 P1(1 P1) < 0.

In + E In + In a + E In
Z i=1 2 1 1 p2 21 p2 (1 p2 )
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Rearranging terms, and substituting A = In PI and 162 = ln P2 , it follows:1 pi 1 P2

1
+

n P1(1 P1)ln ln
Z 2 p2 0 P2)*

g (a) = -1 <=> liz (xi

A + /32i=1

<=> I D(a) I I B(a)I

Using I D(a) I + I B(a) I = n, it follows:

g (a) = -1 <=> I D(a) I .-.
n

2

2

In
1

+
n

ln P1(1 Pl)
Z 2 p2 (1 P2 )

/31 +Q2
2

l n
In P1(1 P1)

1 +
Z 2 p2(1 P2)

131 +Q2
2

Hence, and using N(-1) = I D(a) I , it finally follows by the definition of a QMR:

k* = 1
2

ln
1

+ n
In

P1(1 Pl)

1 +
,Z 2 P2 ll P2 )

n /31 + /62

2

Q.E.D.



Figure 1
[1-p1]
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